Объемная плотность энергии электрического поля. Энергия заряженного проводника и конденсатора. Объемная плотность энергии электрического поля Энергия заряженного конденсатора. Объемная плотность энергии электростатического поля

1. Энергия системы неподвижных точечных заря-до в. Электростатические силы взаимодействия консервативны, следователь­но, система зарядов обладает потенциальной энергией. Найдем потенциальную энергию системы двух неподвижных точечных зарядов Q 1 и Q 2 , находящихся на расстоянии г друг от друга. Каждый из этих зарядов в поле другого обладает потенциальной энергией:

где и - соответственно потенциалы, создаваемые зарядом Q 2 в точке на­хождения заряда Q 1 и зарядом Q 1 в точке нахождения заряда Q 2

и

Поэтому W 1 =W 2 =W и W=Q 1 =Q 2 =1/2(Q 1 + Q 2 ). Добавляя к системе из двух зарядов последовательно заряды Q 3 , Q 4 ..., можно убедиться в
том, что в случае n неподвижных зарядов энергия взаимодействия системы то­чечных зарядив равна

Потенциал, создаваемый в той точке, где находится заряд Q i , всеми зарядами, кроме i-го.

2 Энергия заряженного уединенного проводника. Пусть имеется уединенный проводник, заряд, емкость и потенциал которого соответственно равны Q, С, . Увеличим заряд этого проводника на dQ. Для этого необходимо перенести заряд dQ из бесконечности на уединенный про­водник, затратив на это работу равную

Чтобы зарядить тело от нулевого потенциала до , необходимо совершить работу

, (1.17.2)

Энергия заряженного проводника равна той работе, которую необходимо совершить, чтобы зарядить этот проводник.

(1.17.3)

Формулу (1.17.2) можно получить и из того, что потенциал проводника во всех его точках одинаков, гак как поверхность проводника является эквипотен­циальной. Полагая потенциал проводника равным , из (1.17.1) найдем

где Q = , - заряд проводника.

3. Энергия заряженного конденсатора. Как всякий заряженный проводник, конденсатор обладает энергией, которая в соответствии с формулой (1.17.3) равна

, (1.17.4)

где Q - заряд конденсатора, С - его емкость, ()- разность потенциалов моыц обкладками.

4. Энергия электростатического поля. Преобразуем формулу (1.17.4), выражающую энергию плоского конденсатора посредством зарядов и потенциалов, воспользовавшись выражением для емкости плоского конденсатора () и разности потенциалов между его обкладками . Тогда получим

(1.17.5)

где V = Sd - объем конденсатора. Формула (1.17.5) показывает, что энергия конденсатора выражается через величину, характеризующую электростатическое поле, - напряженность Е.

Объемная плотность энергии электростатического поля (энергия единицы объема)

(1.17.6)

Выражение (1.46) справедливо только для изотропного д и э л с к i р и к а, для которого выполняется соотношение:

Формулы (1.17.4) и (1.17.5) соответственно связывают энергию конденсату,> с зарядом на его обкладках и напряженностью поля. Возникает, естественно, вопрос о локализации электростатической энергии и что является ее носителем- заряды или поле? Ответ на этот вопрос может дать только опыт. Электроста­тика изучает постоянные во времени поля неподвижных зарядов, т.е. в ней поля и обусловившие их заряды неотделимы друг от друга. Поэтому электростатика ответить на поставленные вопросы не может. Дальнейшее развитие теории и эксперимента показало, что переменные во времени электрические и магнитные поля могут существовать обособленно, независимо от возбудивших их за­
рядов, и распространяются в пространстве в виде электромагнитных волн, спо­собных переносить энергию. Это убедительно подтверждает основное положе­ние теории близкодействия о локализации энергии в поле и то, что поле является ее носителем.

Энергия заряженного проводника. Поверхность проводника является эквипотенциальной. Поэтому потенциалы тех точек, в которых находятся точечные заряды dq , одинаковы и равны потенциалу проводника. Заряд q , находящийся на проводнике, можно рассматривать как систему точечных зарядов dq . Тогда энергия заряженного проводника = Энергия заряженного конденсатора. Пусть потенциал обкладки конденсатора, на которой находится заряд +q , равен , а потенциал обкладки, на которой находится заряд -q , равен . Энергия такой системы =

Энергия электрического поля. Энергию заряженного конденсатора можно выразить через величины, характеризующие электрическое поле в зазоре между обкладками. Сделаем это на примере плоского конденсатора. Подстановка выражения для емкости в формулу для энергии конденсатора дает = = Oбъемная плотность энегии электрического поля равна C учетом соотношения D= можно записать ; Зная плотность энергии поля в каждой точке, можно найти энергию поля , заключенного в любом объеме V . Для этого нужно вычислить интеграл: W=

30. Электромагнитная индукция. Опыты Фарадея, правило Ленца, формула для ЭДС электромагнитной индукции, трактовка Максвелла явления электромагнитной индукции Явление электромагнитной индукции открыто М. Фарадеем.Оно заключается в возникновении электрического тока в замкнутом проводящем контуре при изменении во времени магнитного потока, пронизывающего контур. Магнитным потоком Φ через площадь S контура называют величину Ф=B*S*cosaгде B(Вб)– модуль вектора магнитной индукции, α – угол между вектором B и нормалью n к плоскости контура. Фарадей экспериментально установил, что при изменении магнитного потока в проводящем контуре возникает ЭДС индукции, равная скорости изменения магнитного потока через поверхность, ограниченную контуром, взятой со знаком минус: Эта формула носит название закона Фарадея. Опыт показывает, что индукционный ток, возбуждаемый в замкнутом контуре при изменении магнитного потока, всегда направлен так, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызывающего индукционный ток. Это утверждение называется правилом Ленца. Правило Ленца имеет глубокий физический смысл – оно выражает закон сохранения энергии.1)Магнитный поток изменяется вследствие перемещения контура или его частей в постоянном во времени магнитном поле. Это случай, когда проводники, а вместе с ними и свободные носители заряда, движутся в магнитном поле. Возникновение ЭДС индукции объясняется действием силы Лоренца на свободные заряды в движущихся проводниках. Сила Лоренца играет в этом случае роль сторонней силы.Рассмотрим в качестве примера возникновение ЭДС индукции в прямоугольном контуре, помещенном в однородное магнитное поле В перпендикулярное плоскости контура. Пусть одна из сторон контура длиной L скользит со скоростью v по двум другим сторонам.На свободные заряды на этом участке контура действует сила Лоренца. Одна из составляющих этой силы, связанная с переносной скоростью v зарядов, направлена вдоль проводника. Она играет роль сторонней силы. Ее модуль равен Fл=evB. Работа силы F Л на пути L равна A=Fл*L=evBL.По определению ЭДС. В других неподвижных частях контура сторонняя сила равна нулю. Соотношению для инд можно придать привычный вид. За время Δt площадь контура изменяется на ΔS = lυΔt. Изменение магнитного потока за это время равно ΔΦ = BlυΔt. Следовательно, Для того, чтобы установить знак в формуле, нужно выбрать согласованные между собой по правилу правого буравчика направление нормали n и положительное направление обхода контура L Если это сделать, то легко прийти к формуле Фарадея.



Если сопротивление всей цепи равно R, то по ней будет протекать индукционный ток, равный I инд = инд /R. За время Δt на сопротивлении R выделится джоулево тепло .Возникает вопрос: откуда берется эта энергия, ведь сила Лоренца работы не совершает! Этот парадокс возник потому, что мы учли работу только одной составляющей силы Лоренца. При протекании индукционного тока по проводнику, находящемуся в магнитном поле, на свободные заряды действует еще одна составляющая силы Лоренца, связанная с относительной скоростью движения зарядов вдоль проводника. Эта составляющая ответственна за появление силы Ампера. модуль силы Ампера равен F A = I B l. Сила Ампера направлена навстречу движению проводника; поэтому она совершает отрицательную механическую работу. За время Δt эта работа . Движущийся в магнитном поле проводник, по которому протекает индукционный ток, испытывает магнитное торможение . Полная работа силы Лоренца равна нулю. Джоулево тепло в контуре выделяется либо за счет работы внешней силы, которая поддерживает скорость проводника неизменной, либо за счет уменьшения кинетической энергии проводника.2. Вторая причина изменения магнитного потока, пронизывающего контур, – изменение во времени магнитного поля при неподвижном контуре. В этом случае возникновение ЭДС индукции уже нельзя объяснить действием силы Лоренца. Электроны в неподвижном проводнике могут приводиться в движение только электрическим полем. Это электрическое поле порождается изменяющимся во времени магнитным полем. Работа этого поля при перемещении единичного положительного заряда по замкнутому контуру равна ЭДС индукции в неподвижном проводнике. Следовательно, электрическое поле, порожденное изменяющимся магнитным полем, не являетсяпотенциальным . Его называют вихревым электрическим полем . Представление о вихревом электрическом поле было введено в физику великим английским физиком Дж. Максвеллом в 1861 г.Явление электромагнитной индукции в неподвижных проводниках, возникающее при изменении окружающего магнитного поля, также описывается формулой Фарадея. Таким образом, явления индукции в движущихся и неподвижных проводниках протекают одинаково, но физическая причина возникновения индукционного тока оказывается в этих двух случаях различной: в случае движущихся проводников ЭДС индукции обусловлена силой Лоренца; в случае неподвижных проводников ЭДС индукции является следствием действия на свободные заряды вихревого электрического поля, возникающего при изменении магнитного поля.

11. Энергия заряженного проводника и конденсатора. Плотность энергии электростатического поля.

1. Энергия заряженного проводника и конденсатора.

Если уединенный проводник имеет заряд q, то вокруг него существует электрическое поле, потенциал которого на поверхности проводника равен , а емкость - С. Увеличим заряд на величину dq. При переносе заряда dq из бесконечности должна быть совершена работа равная . Но потенциал электростатического поля данного проводника в бесконечности равен нулю . Тогда

При переносе заряда dq с проводника в бесконечность такую же работу совершают силы электростатического поля. Следовательно, при увеличении заряда проводника на величину dq возрастает потенциальная энергия поля, т.е.

Проинтегрировав данное выражение, найдем потенциальную энергию электростатического поля заряженного проводника при увеличении его заряда от нуля до q:

Применяя соотношение , можно получить следующие выражения для потенциальной энергии W:

Для заряженного конденсатора разность потенциалов (напряжение) равна поэтому соотношение для полной энергии его электростатического поля имеют вид:

2. Плотность энергии электростатического поля.

Это физическая величина, численно равная отношению потенциальной энергии поля, заключенной в элементе объема, к этому объему. Для однородного поля объемная плотность энергии равна . Для плоского конденсатора, объем которого Sd, где S - площадь пластин, d - расстояние между пластинами, имеем:

С учетом, что и :

Или .

12. Носители тока в средах. Сила и плотность тока. Уравнение непрерывности. Электрическое поле в проводнике с током. Силовые линии электрического поля и линии тока.

Электрический ток - упорядоченное некомпенсированное движение свободных электрически заряженных частиц, например, под воздействием электрического поля. Такими частицами могут являться: в проводниках - электроны , в электролитах - ионы (катионы и анионы ), в газах - ионы и электроны , в вакууме при определенных условиях -электроны , в полупроводниках - электроны и дырки (электронно-дырочная проводимость).

Сила тока - скалярная физическая величина, определяемая отношением заряда Δq, проходящего через поперечное сечение проводника за некоторый промежуток времени Δt, к этому промежутку времени.

Единицей силы тока в СИ является ампер (А).

Если сила тока и его направление со временем не изменяются, то ток называется постоянным.

Единица силы тока - основная единица в СИ 1 А - есть сила такого неизменяющегося тока, который, проходя по двум бесконечно длинным параллельным прямолинейным проводникам очень маленького сечения, расположенным на расстоянии 1 м друг от друга в вакууме, вызывает силу взаимодействия между ними 2·10-7 Η на каждый метр длины проводников.

Рассмотрим, как зависит сила тока от скорости упорядоченного движения свободных зарядов.

Выделим участок проводника площадью сечения S и длиной Δl (рис. 1). Заряд каждой частицы q0. В объеме проводника, ограниченном сечениями 1 и 2, содержится nSΔl частиц, где n - концентрация частиц. Их общий заряд


Рис. 1

Если средняя скорость упорядоченного движения свободных зарядов , то за промежуток времени все частицы, заключенные в рассматриваемом объеме, пройдут через сечение 2. Поэтому сила тока:

Таким образом, сила тока в проводнике зависит от заряда, переносимого одной частицей, их концентрации, средней скорости направленного движения частиц и площади поперечного сечения проводника.

Заметим, что в металлах модуль вектора средней скорости упорядоченного движения электронов при максимально допустимых значениях силы тока ~ 10-4 м/с, в то время как средняя скорость их теплового движения ~ 106 м/с.

Плотность тока j - это векторная физическая величина, модуль которой определяется отношением силы тока I в проводнике к площади S поперечного сечения проводника, т.е.

В СИ единицей плотности тока является ампер на квадратный метр (А/м2).

Как следует из формулы (1), . Направление вектора плотности тока совпадает с направлением вектора скорости упорядоченного движения положительно заряженных частиц. Плотность постоянного тока постоянна по всему поперечному сечению проводника.

Уравнение непрерывности.

Представим себе, в некоторой проводящей среде, где течет ток, замкнутую поверхность S . Для замкнутых поверхностей векторы нормалей, а следовательно, и векторы принято брать наружу, поэтому интеграл дает заряд, выходящий в единицу времени наружу из объема V , охваченного поверхностью S . Мы знаем, что плотность постоянного электрического тока одинакова по всему поперечному сечению S однородного проводника. Поэтому для постоянного тока в однородном проводнике с поперечным сечением S сила тока:

Пусть S – замкнутая поверхность, а векторы всюду проведены по внешним нормалям . Тогда поток вектора сквозь эту поверхность S равен электрическому току I , идущему вовне из области, ограниченный замкнутой поверхностью S . Следовательно, согласно закону сохранения электрического заряда, суммарный электрический заряд q , охватываемый поверхностью S , изменяется за время на , тогда в интегральной форме можно записать.

Согласно определению потенциала (12.17), энергию взаимодействия системы п неподвижных точечных зарядов (/ = 1 ,п) можно определить

где ф, - потенциал, создаваемый в той точке, где находится заряд, всеми зарядами, кроме /-го. Если заряд распределен в пространстве непрерывно с объемной плотностью р = р(г), то элемент объема dV будет иметь заряд dq - pdV. Тогда энергия системы определяется уравнением

|

где V - весь объем, занимаемый зарядом.

Определим энергию заряженного уединенного проводника произвольной формы, заряд, емкость и потенциал которого равны соответственно q, С, ф. Потенциал во всех точках уединенного проводника одинаков. Зная ф, найдем его энергию как

или, используя С = q/q> (формула (12.40)), найдем

Можно доказать, что электрическая энергия системы из п неподвижных заряженных проводников

где OjdS, поскольку в проводнике избыточные заряды распределе-

ны по его внешней поверхности, о, - поверхностная плотность сторонних зарядов на малом элементе поверхности /-го проводника площадью dS. Интегрирование проводится по всей эквипотенциальной внешней поверхности проводника площадью 5). Таким образом, формулу (13.26в) перепишем в виде

где Sj - поверхность заряженных проводников.

В общем случае электрическую энергию любой системы заряженных неподвижных тел - проводников и непроводников - можно найти по формуле

где ф - потенциал результирующего поля всех сторонних и связанных зарядов в точках малых элементов dS и dV заряженных поверхностей и объемов; аир- соответственно поверхностная и объемная плотности сторонних зарядов. Интегрирование проводится по всем заряженным поверхностям S и по всему заряженному объему Стел системы.

Согласно формуле (13.28), если заряд распределен непрерывно, то необходимо разбить заряд каждого тела на бесконечно малые элементы odS или рdV и каждый из них умножить на потенциал ф, создаваемый не только зарядами других объектов, но и элементами заряда этого тела.

Расчет по формуле (13.28) позволяет вычислить полную энергию взаимодействия, поскольку получаем величину, равную сумме энергий взаимодействия заряженных неподвижных тел и их собственных энергий.

Собственная энергия заряженного тела - это энергия взаимодействия друг с другом элементов данного заряженного тела.

Энергию W можно трактовать как потенциальную энергию системы заряженных тел, обусловленную кулоновскими силами их взаимодействия. Влияние среды на энергию системы при неизменном распределении сторонних зарядов таково, что значения потенциалов ф в разных диэлектриках различны. Например, в однородном, изотропном диэлектрике, заполняющем все поле, ф меньше, чем в вакууме, в? раз.

Из формулы (13.28) можно получить также формулу для электрической энергии конденсатора (р = 0):

где -S") и xSj - площади обкладок конденсатора; q = CU .

Изучение переменных электромагнитных полей (тема 20) показало, что они могут существовать отдельно от породивших их систем электрических зарядов и токов, а их распространение в пространстве в виде электромагнитных волн связано с переносом энергии. Так, было доказано, что электромагнитное поле обладает энергией. Соответственно и электростатическое поле обладает энергией, которая распределена в поле с объемной плотностью w e .

Объемная плотность энергии электростатического поля w e в случае однородных полей вычисляется по формуле

Для неоднородных полей справедливо выражение

где dW - энергия малого элемента dV объема поля, в пределах которого величину объемной плотности электростатического поля w e можно считать всюду одинаковой.

Единица объемной плотности энергии электрического поля в СИ - джоуль на метр в кубе (Дж/м 3).

Объемная плотность энергии электростатического поля в изотропной диэлектрической среде (или вакууме)

где D - электрическое смешение. Согласно уравнению (13.12а), D = ce 0 E .

Необходимо отметить, что формулы (13.25) - (13.28а) справедливы для потенциальных электростатических полей, т.е. полей неподвижных заряженных тел.

Для переменных непотенциальных электрических полей понятие потенциала и построенные на его основе выражения для энергии лишены смысла. Эти поля обладают энергией, которую можно найти, пользуясь универсальной формулой, справедливой как для однородного, так и для неоднородного поля:

где V - объем, занимаемый полем.

Энергия поляризованного диэлектрика. Как следует из формулы (13.31), объемная плотность энергии электростатического поля в вакууме

При той же напряженности Е поля в диэлектрической среде объемная плотность энергии поля в г раз больше, чем в вакууме:

Поэтому объемная плотность энергии и> диэл поляризованного диэлектрика определяется как

где Р = х? о^ - поляризованность диэлектрика; х - диэлектрическая восприимчивость диэлектрика.

Пондеромоторные силы. Пондеромоторные силы - это механические силы, которые действуют на заряженные тела, помещенные в электрическое поле. Под действием данных сил поляризованный диэлектрик деформируется - это явление называется электрострикцией. Причиной возникновения пондеромоторных сил является действие неоднородного электрического поля на дипольные молекулы поляризованного диэлектрика. Эти силы обусловлены неоднородностью макрополя, а также микрополя, создаваемого в основном ближайшими молекулами поляризованного диэлектрика.

Рассмотрим, например, заряженный плоский конденсатор (см. рис. 12.18), отключенный от источника (постоянные заряды на обкладках). Введем в него диэлектрик с диэлектрической проницаемостью z таким образом, чтобы между ним и пластинами конденсатора не было даже тонкого зазора (иначе силы электрострикции не передавались бы пластинам и сила взаимодействия между пластинами не менялась бы при введении диэлектрика). Под действием пондеромоторной силы обкладки конденсатора сжимают пластину диэлектрика, помещенного между ними, и в диэлектрике возникает давление.

Если расстояние между пластинами уменьшается на dx, то механическая работа

где F x - проекция силы притяжения F между пластинами конденсатора на положительное положение осиХ. Изменение энергии поля

где S - площадь поверхности обкладки конденсатора.

Согласно закону сохранения энергии, механическая работа сил электрического поля равна уменьшению его энергии. Тогда пондеромоторная сила (сила, действующая на единицу поверхности пластины)

т.е. будет равна объемной плотности энергии электрического поля.

  • 1.1.7. Теорема гаусса в интегральной форме и ее применение к расчету электрических полей
  • 1.1.8. Теорема гаусса в дифференциальной форме. Дивергенция векторного поля
  • 1.1.9.Потенциальный характер электростатического поля. Работа сил поля при перемещении зарядов. Циркуляция и ротор векторного поля. Теорема стокса в интегральной и дифференциальной форме
  • 1.1.10.Потенциал электростатического поля. Потенциальная энергия заряда в электростатическом поле
  • 1.1.11. Связь между напряженностью и потенциалом
  • 1.1.12. Уравнение пуассона и лапласа для потенциала
  • 1.1.13. Эквипотенциальные поверхности
  • Лекция 2
  • 1.2. Диэлектрики в электрическом поле
  • 1.2.1.Полярные и неполярные молекулы
  • 1.2.2. Диполь во внешнем электрическом поле
  • 1.2.3 Поляризация диэлектриков. Ориентационный и деформационный механизмы поляризации. Дипольный момент системы зарядов. Диэлектрическая восприимчивость для полярных и неполярных диэлектриков
  • 1.2.5. Вектор электрического смещения (электростатической индукции). Диэлектрическая проницаемость диэлектриков
  • 1.2.6. Граничные условия для векторов напряженности электрического поля и электрического смещения
  • 1.2.7. Примеры расчета электрических полей в диэлектриках
  • 1.2.8. Силы, действующие на заряд в диэлектрике
  • 1.3.Проводники в электрическом поле
  • 1.3.1. Равновесие зарядов на приводнике. Основная задача электростатики проводников. Эквипотенциальные поверхности и силовые линии электростатического поля между проводниками
  • 1.3.2.Проводник во внешнем электрическом поле. Электростатическая защита
  • 1.3.3.Электроемкость проводников
  • 1.3.4. Электроемкость конденсаторов
  • 1.3.5. Соединения конденсаторов
  • 1.4.Энергия электрического поля
  • 1.4.1.Энергия взаимодействия электрических зарядов. Теорема ирншоу
  • 1.4.2. Энергия заряженного проводника
  • 1.4.3. Энергия заряженного конденсатора. Объемная плотность энергии электростатического поля
  • 1.4.4.Энергия поляризованного диэлектрика. Объемная плотность энергии электрического поля в диэлектрике
  • 1.4.5. Энергия системы заряженных проводников
  • 1.4.6. Закон сохранения энергии для электрического поля в несегнетоэлектрической среде
  • 1.4.2. Энергия заряженного проводника

    Заряжая некоторый проводник, необходимо совершить определенную работу против кулоновских сил отталкивания между одноименными электрическими зарядами. Эта работа идет на увеличение электрической энергии заряженного проводника, которая в данном случае аналогична потенциальной энергии в механике.

    Рассмотрим проводник, имеющий электроемкость , заряди потенциал. Работа, совершаемая против сил электростатического поля при перенесении заряда
    из бесконечности на проводник равна

    .

    Для того, чтобы зарядить тело от нулевого потенциала до потенциала , необходимо совершить работу
    . Ясно, что энергия заряженного тела равна той работе, которую нужно совершить, чтобы зарядить это тело:
    .

    Энергию называют собственной энергией заряженного тела. Ясно, что собственная энергия есть не что иное, как энергия электростатического поля этого тела.

    1.4.3. Энергия заряженного конденсатора. Объемная плотность энергии электростатического поля

    Пусть потенциал обкладки конденсатора, на которой находится заряд
    , равен, а потенциал обкладки, на которой находится заряд
    ,. Энергия такой системы зарядов, то есть равна собственной энергии системы зарядов, где- напряжение между обкладками конденсатора,
    .

    Рассмотрим плоский конденсатор. Энергия, заключенная в единице объема электростатического поля называется объемной плоскостью энергии. Эта объемная плоскость должна быть одинаковой во всех точках однородного поля, а полная энергия поля пропорциональна его объему. Известно, что
    ,
    , тогда для энергии имеем:
    , но
    - объем электростатического поля между обкладками конденсатора, то есть
    . Тогда объемная плотность энергииоднородного электростатического поля конденсатора равна
    , и определяется его напряженностью или смещением. В случае неоднородных электрических полей

    Найдем энергию сферического конденсатора. На расстоянии от центра заряженного шара напряженность его электростатического поля равна
    . Рассмотрим бесконечно тонкий шаровой слой, заключенный между сферами радиусови
    . Объем такого слоя:
    . Энергия слоя
    следовательно,

    .

    Тогда полная энергия заряженного шара равна:

    ,

    где - радиус шара. Емкость шара
    , следовательно,
    - энергия электростатического поля сферического конденсатора равна его собственной энергии, так как заряженное тело потому и обладает электрической энергией, что при его зарядке была совершена работа против сил создаваемого им электростатического поля.

    1.4.4.Энергия поляризованного диэлектрика. Объемная плотность энергии электрического поля в диэлектрике

    Рассмотрим однородный изотропный диэлектрик, находящийся во внешнем электрическом поле. Процесс поляризации связан с работой по деформации электронных орбит в атомах и молекулах и по повороту осей молекул-диполей вдоль поля. Ясно, что поляризованный диэлектрик должен обладать запасом электрической энергии.

    Если поле напряженностью создано в вакууме,
    , то объемная плотность энергии этого поля в точке с напряженностьюравна:

    Докажем, что объемная плотность энергии поляризованного диэлектрика в этой точке выражается формулой:
    .

    Рассмотрим диэлектрик с неполярными молекулами. Молекулы такого диэлектрика являются упругими диполями. Электрический момент упругого диполя, находящегося в поле с напряженностью , равен
    , где- поляризуемость диполя, или в скалярной форме:

    , (1.4.1)

    где
    - заряд и плечо диполя.

    На заряд со стороны поля действует сила
    , которая при увеличении длины диполя на
    совершает работу
    . Из выражения (1.4.1) получаем:
    , поэтому

    . (1.4.2)

    Чтобы найти работу поля при деформации одного упругого диполя, надо проинтегрировать выражение (1.4.2):

    .

    Работа равна той потенциальной энергии, которой обладает упругий диполь в электрическом поле напряженностью. Пусть- число диполей в единице объема диэлектрика. Тогда потенциальная энергия всех этих диполей, то есть объемная плотность энергии поляризованного диэлектрика равна:
    . Однако
    - модуль вектора поляризации, тогда
    . Известно, что
    , и
    , тогда
    , что и требовалось доказать.