Живой аккумулятор энергии - атф. Универсальные формы клеточной энергии Универсальным аккумулятором энергии в клетке является

Современное представление о процессе окислительного фосфорилирования ведет свое начало от пионерских работ Белицера и Калькара. Калькар установил, что аэробное фосфорилирование сопряжено с дыханием. Белицер подробно изучил стехиометрические отношения между сопряженным связыванием фосфата и поглощением кислорода и показал, что отношение числа молекул неорганического фосфата к числу атомов поглощенного кислорода

при дыхании равно не менее чем двум. Он же указал, что перепое электронов от субстрата к кислороду является возможным источником энергии для образования двух и более молекул АТФ на один атом поглощенного кислорода.

Донором электронов служит молекула НАД Н, и реакция фосфорилирования имеет вид

Кратко эту реакцию записывают в виде

Синтез трех молекул АТФ в реакции (15.11) происходит за счет переноса двух электронов молекулы НАД Н по цепи электронного транспорта к молекуле кислорода. При этом энергия каждого электрона понижается на 1,14 эВ.

В водной среде при участии специальных ферментов происходит гидролиз молекул АТФ

Структурные формулы молекул, входящих в реакции (15.12) и (15.13), приведены на рис. 31.

При физиологических условиях входящие в реакции (15.12) и (15.13) молекулы находятся в разных стадиях ионизации (АТФ, ). Поэтому химические символы в этих формулах следует понимать как условную запись реакций между молекулами, находящимися в разных стадиях ионизации. В связи с йтим увеличение свободной энергии AG в реакции (15.12) и ее уменьшение в реакции (15.13) зависит от температуры, концентрации ионов и от значения pH среды. При стандартных условиях эВ ккал/моль). Если ввести соответствующие поправки с учетом физиологических значений pH и концентрации ионов внутри клеток, а также обычные значения концентраций молекул АТФ и АДФ и неорганического фосфата в цитоплазме клеток, то для свободной энергии гидролиза молекул АТФ получим значение -0,54 эВ (-12,5 ккал/моль). Свободная энергия гидролиза молекул АТФ не является величиной постоянной. Она может быть неодинаковой даже в разных местах одной клетки, если эти места различаются по концентрации

Со времени появления пионерской работы Липмана (1941 г.) известно, что молекулы АТФ в клетке выполняют роль универсального кратковременного хранителя и переносчика химической энергии, используемой в большинстве процессов жизнедеятельности.

Выделение энергии в процессе гидролиза молекулы АТФ сопровождается преобразованием молекул

При этом разрыв связи, обозначенной символом приводит к отщеплению остатка фосфорной кислоты. По предложению Липмана такую связь стали называть «фосфатной связью, богатой энергией» или «макроэргической связью». Это название крайне неудачно. Оно совершенно не отражает энергетики процессов, происходящих при гидролизе. Выделение свободной энергии обусловлено не разрывом одной связи (такой разрыв всегда требует затраты энергии), а перестройкой всех молекул, участвующих в реакциях, образованием новых связей и перестройкой сольватных оболочек при реакции.

При растворении молекулы NaCl в воде образуются гидратированные ионы Выигрыш энергии при гидратации перекрывает затрату энергии при разрыве связи в молекуле NaCl. Было бы странным приписывать этот выигрыш энергии «высоко-эргичности связи» в молекуле NaCl.

Как известно, при делении тяжелых атомных ядер выделяется большая энергия, что не связано с разрывом каких-либо высоко-эргических связей, а обусловлено перестройкой осколков деления и уменьшением энергии кулоповского отталкивания между нуклонами в каждом осколке.

Справедливая критика представления о «макроэргических связях» высказывалась неоднократно . Тем не менее это представление широко внедрилось в научную литературу. Большой

Таблица 8

Структурные формулы фосфорилированных соединений: а - фосфоэноллируват; б - 1,3-дифосфоглицерат; в - креатинфосфат; - глюкозо-I-фосфат; - глюкозо-6-фосфат.

беды в этом нет, если выражение «высокоэргическая фосфатная связь» испольаовать условно, как краткое описание всего цикла преобразований, происходящих в водном растворе при соответствующем наличии других ионов, pH и т. д.

Итак, понятие энергия фосфатной связи, испольауемое биохимиками, условно характеризует разность между свободной энергией исходных веществ и свободной энергией продуктов реакций гидролиза, при которых отщепляются фосфатные группы. Это понятие нельзя путать с понятием энергии химической связи между двумя группами атомов в свободной молекуле. Последняя характеризует энергию, необходимую для разрыва свяэи.

В клетках содержится ряд фосфорилированных соединений, гидролиз которых в цитоплазме связан с выделением свободной анергии. Значения стандартных свободных энергий гидролиза некоторых из этих соединений приведены в табл. 8. Структурные формулы этих соединений изображены на рис. 31 и 35.

Большие отрицательные величины стандартных свободных анергий гидролиза обусловлены энергией гидратации отрицательно заряженных продуктов гидролиза и перестройкой их электронных оболочек. Из табл. 8 следует, что значение стандартной свободной энергии гидролиза молекулы АТФ занимает промежуточное положение между «высокоэнергетическими» (фосфоэнолпиру-нат) и «низкоэнергетическими» (глюкозо-6-фосфат) соединениями. Это одна из причин того, что молекула АТФ является удобным универсальным переносчиком фосфатных групп.

С помощью специальных ферментов молекулы АТФ и АДФ осуществляют связь между высоко- и низкоэнергетическими

фосфатными соединениями. Например, фермент пируваткиназа переносит фосфат с фосфоэнолпирувата на АДФ. В результате реакции образуется пируват и молекула АТФ. Далее с помощью фермента гексокиназа молекула АТФ может передать фосфатную группу D-глюкозе, превратив ее в глюкозо-6-фосфат. Суммарный продукт этих двух реакций сведется к преобразованию

Весьма важно, что реакции этого типа могут проходить только через промежуточный этап, в котором обязательно участвуют молекулы АТФ и АДФ.

Универсальный биологический аккумулятор энергии. Световая энергия Солнца и энергия, заключенная в потребляемой пище, запасается в молекулах АТФ. Запас АТФ в клетке невелик. Так, в мышце запаса АТФ хватает на 20-30 сокращений. При усиленной, но кратковременной работе мышцы работают исключительно за счет расщепления содержащейся в них АТФ. После окончания работы человек усиленно дышит - в этот период происходит расщепление углеводов и других веществ (происходит накопление энергии) и запас АТФ в клетках восстанавливается.

18. КЛЕТКА

ЭУКАРИОТЫ (эвкариоты) (от греч. eu - хорошо, полностью и karyon - ядро), организмы (все, кроме бактерий, включая цианобактерии), обладающие, в отличие от прокариот, оформленным клеточным ядром, отграниченным от цитоплазмы ядерной оболочкой. Генетический материал заключен в хромосомах. Клетки эукариоты имеют митохондрии, пластиды и другие органоиды. Характерен половой процесс.

19. КЛЕТКА , элементарная живая система, основа строения и жизнедеятельности всех животных и растений. Клетки существуют как самостоятельные организмы (напр., простейшие, бактерии) и в составе многоклеточных организмов, в которых имеются половые клетки, служащие для размножения, и клетки тела (соматические), различные по строению и функциям (напр., нервные, костные, мышечные, секреторные). Размеры клетки варьируют в пределах от 0,1-0,25 мкм (некоторые бактерии) до 155 мм (яйцо страуса в скорлупе).

У человека в организме новорожденного ок. 2·1012. В каждой клетке различают 2 основные части: ядро и цитоплазму, в которой находятся органоиды и включения. Клетки растений, как правило, покрыты твердой оболочкой. Наука о клетке - цитология.

ПРОКАРИОТЫ (от лат. pro - вперед, вместо и греч. karyon - ядро), организмы, не обладающие, в отличие от эукариот, оформленным клеточным ядром. Генетический материал в виде кольцевой цепи ДНК лежит свободно в нуклеотиде и не образует настоящих хромосом. Типичный половой процесс отсутствует. К прокариотам относятся бактерии, в т. ч. цианобактерии (сине-зеленые водоросли). В системе органического мира прокариоты составляют надцарство.

20. ПЛАЗМАТИЧЕСКАЯ МЕМБРАНА (клеточная мембрана, плазмалемма), биологическая мембрана, окружающая протоплазму растительных и животных клеток. Участвует в регуляции обмена веществ между клеткой и окружающей ее средой.

21. КЛЕТОЧНЫЕ ВКЛЮЧЕНИЯ - скопления запасных питательных веществ: белков, жиров и углеводов.

22. ГОЛЬДЖИ АППАРТ (Гольджи комплекс) (по имени К. Гольджи), органоид клетки, участвующий в формировании продуктов ее жизнедеятельности (различных секретов, коллагена, гликогена, липидов и др.), в синтезе гликопротеидов.

23 ЛИЗОСОМЫ (от лиз. и греч. soma - тело), клеточные структуры, содержащие ферменты, способные расщеплять (лизировать) белки, нуклеиновые кислоты, полисахариды. Участвуют во внутриклеточном переваривании веществ, поступающих в клетку путем фагоцитоза и пиноцитоза.

24. МИТОХОНДРИЙ окружены наружной мембраной и, следовательно, уже являются компартментом, будучи отделенными от окружающей цитоплазмы; кроме того, внутреннее пространство митохондрий также подразделено на два компартмента с помощью внутренней мембраны. Наружная мембрана митохондрий очень похожа по составу на мембраны эндоплазматической сети; внутренняя мембрана митохондрий, образующая складки (кристы), очень богата белками - пожалуй, эта одна из самых насыщенных белками мембран в клетке; среди них белки «дыхательной цепи», отвечающие за перенос электронов; белки-переносчики для АДФ, АТФ, кислорода, СО у некоторых органических молекул и ионов. Продукты гликолиза, поступающие в митохондрии из цитоплазмы, окисляются во внутреннем отсеке митохондрий.

Белки, отвечающие за перенос электронов, расположены в мембране так, что в процессе переноса электронов протоны выбрасываются по одну сторону мембраны - они попадают в пространство между наружной и внутренней мембраной и накапливаются там. Это приводит к возникновению электрохимического потенциала (вследствие разницы в концентрации и зарядах). Эта разница поддерживается благодаря важнейшему свойству внутренней мембраны митохондрии - она непроницаема для протонов. То есть при обычных условиях сами по себе протоны пройти сквозь эту мембрану не могут. Но в ней имеются особые белки, точнее белковые комплексы, состоящие из многих белков и формирующие канал для протонов. Протоны проходят через этот канал под действием движущей силы электрохимического градиента. Энергия этого процесса используется ферментом, содержащимся в тех же самых белковых комплексах и способным присоединить фосфатную группу к аденозиндифосфату (АДФ), что и приводит к синтезу АТФ.

Митохондрия, таким образом, исполняет в клетке роль «энергетической станции». Принцип образования АТФ в хлоропластах клеток растений в общем тот же - использование протонного градиента и преобразование энергии электрохимического градиента в энергию химических связей.

25. ПЛАСТИДЫ (от греч. plastos - вылепленный), цитоплазматические органоиды растительных клеток. Нередко содержат пигменты, обусловливающие окраску пластиды. У высших растений зеленые пластиды - хлоропласты, бесцветные - лейкопласты, различно окрашенные - хромопласты; у большинства водорослей пластиды называют хроматофорами.

26. ЯДРО - наиболее важная часть клетки. Оно покрыто двух­мембранной оболочкой с порами, через которые одни вещества про­никают в ядро, а другие поступают в цитоплазму. Хромосомы - ос­новные структуры ядра, носители наследственной информации о при­знаках организма. Она передается в процессе деления материнской клетки дочерним клеткам, а с по­ловыми клетками - дочерним ор­ганизмам. Ядро - место синтеза ДНК, иРНК. рРНК.

28. ФАЗЫ МИТОЗА (профаза, мета-фаза, анафаза, телофаза) - ряд по­следовательных изменений в клет­ке: а) спирализация хромосом, растворение ядерной оболочки и ядрышка; б) формирование верете­на деления, расположение хромо­сом в центре клетки, присоедине­ние к ним нитей веретена деления;в) расхождение хроматид к проти­воположным полюсам клетки (они становятся хромосомами);

г) формирование клеточной пере­городки, деление цитоплазмы и ее органоидов, образование ядерной оболочки, появление двух клеток из одной с одинаковым набором хромосом (по 46 в материнской и дочерних клетках человека).

В ходе экзэргонических реакций (например, окислительных) выделяется энергия. Примерно 40-50% ее запасается в специальных аккумуляторах. Выделяют 3 основных аккумулятора энергии:

1. Внутренняя мембрана митохондрий – это промежуточный аккумулятор энергии при получении АТФ. За счет энергии окисления веществ происходит «выталкивание» протонов из матрикса в межмембранное пространство митохондрий. В результате создается электрохимический потенциал на внутренней мембране митохондрий. При разрядке мембраны энергия электрохимического потенциала трансформируется в энергию АТФ: Е окисл. ® Е эхп ® Е АТФ. Для реализации этого механизма внутренняя мембрана митохондрий содержит ферментативную цепь переноса электронов на кислород и АТФ-синтазу (протонзависимую синтазу АТФ).

2. АТФ и другие макроэргические соединения . Материальным носителем свободной энергии в органических веществах являются химические связи между атомами. Обычным энергетическим уровнем возникновения или распада химической связи является ~ 12,5 кДж/моль. Однако имеется ряд молекул, при гидролизе связей которых выделяется более 21 кДж/моль энергии (табл. 6.1). К ним относятся соединения с макроэргической фосфоангидридной связью (АТФ), а также ацилфосфаты (ацетил-фосфат, 1,3-БФГК), енол-фосфаты (фосфоенолпируват) и фосфогуанидины (фосфокреатин, фосфоаргинин).

Таблица 6.1

Стандартная свободная энергия гидролиза некоторых фосфорилированных соединений

Примечание: 1 ккал = 4,184 кДж

Основным макроэргическим соединением в организме человека является АТФ.

В АТФ цепочка из трех фосфатных остатков связана с 5’-ОН группой аденозина. Фосфатные группы обозначаются как a, b и g. Два остатка фосфорной кислоты соединены между собой фосфоангидридными связями, а a-остаток фосфорной кислоты – фосфоэфирной связью. При гидролизе АТФ в стандартных условиях выделяется -30,5 кДж/моль энергии.

При физиологических значениях рН АТФ несет четыре отрицательных заряда. Одной из причин относительной нестабильности фосфоангидридных связей является сильное отталкивание отрицательно заряженных атомов кислорода, которое ослабевает при гидролитическом отщеплении концевой фосфатной группы. Поэтому такие реакции являются высоко экзэргоническими.

В клетках АТФ находится в комплексе с ионами Mg 2+ или Mn 2+ , координационно связанными с a- и b-фосфатом, что увеличивает изменение свободной энергии при гидролизе АТФ до 52,5 кДж/моль.

Центральное место в приведенной шкале (табл. 9.1.) занимает цикл АТФ « АДФ + Рн. Это позволяет АТФ быть как универсальным аккумулятором, так и универсальным источником энергии для живых организмов . В клетках теплокровных АТФ как универсальный аккумулятор энергии возникает двумя путями:

1) аккумулирует энергию более энергоемких соединений, стоящих выше АТФ в термодинамической шкале без участия О 2 – субстратноефосфорилирование : S ~ Р + АДФ ® S + АТФ;

2) аккумулирует энергию электрохимического потенциала при разрядке внутренней мембраны митохондрии – окислительное фосфорилирование.

АТФ является универсальный источником энергии для совершения основных видов работы клетки (движение, трансмембранный перенос веществ, биосинтезы): а) АТФ + Н 2 О ® АДФ + Рн;
б) АTФ + Н 2 О ® АМФ + РРн. Во время интенсивных упражнений скорость использования АТФ может достигать 0,5 кг/мин. Если ферментативная реакция термодинамически невыгодна, то она может осуществиться при сопряжении с реакцией гидролиза АТФ. Гидролиз молекулы АТФ изменяет равновесное отношение субстратов и продуктов в сопряженной реакции в 10 8 раз.

К макроэргическим соединениям относят также нуклеозидтрифосфаты, которые обеспечивают энергией ряд биосинтезов: УТФ – углеводов; ЦТФ – липидов; ГТФ – белков. В биоэнергетике мышц важное место занимает креатинфосфат.

3. НАДФН+Н + (НАДФН 2) – никотинамидадениндинуклеотидфосфат восстановленный. Это специальный аккумулятор с высокой энергией, который используется в клетке (цитозоль) для биосинтезов. R-CH 3 + НАДФН 2 + О 2 ® R-CH 2 ОН + Н 2 О + НАДФ + (здесь показано создание ОН-группы в молекуле).

Освобождение энергии в живой клетке осуществляется постепенно, благодаря этому на различных этапах ее выделения она может аккумулироваться в удобной для клетки химической форме в виде АТФ. Различают три фазы, которые совпадают со стадиями катаболизма.

Первая фаза – подготовительная. На этой стадии происходит распад полимеров до мономеров в желудочно-кишечном тракте или внутри клеток. Освобождается до 1% энергии субстратов, которая рассеивается в виде тепла.

Вторая фаза – распад полимеров до общих промежуточных продуктов. Для нее характерно частичное (до 20%) освобождение энергии, заключенной в исходных субстратах. Часть этой энергии аккумулируется в фосфатных связях АТФ, а часть рассеивается в виде тепла.

Третья фаза – распад метаболитов до СО 2 и Н 2 О с участием кислорода в митохондриях . Примерно 80% всей энергии химических связей веществ освобождается в данной фазе, которая сосредотачивается в фосфатных связях АТФ. Строение митохондрий:

1. Внешняя мембрана МХ отграничивает внутреннее пространство; проницаема для О 2 и ряда низкомолекулярных веществ. Содержит ферменты метаболизма липидов и моноаминов.

2. Межмембранное пространство (ММП) содержит аденилаткиназу
(АТФ + АМФ « 2 АДФ) и ферменты фосфорилирования АДФ, не связанные с дыхательными цепями.

3. Внутренняя мембрана митохондрий (ВМП): 20-25% от всех белков составляют ферменты цепей переноса протонов и электронов и окислительного фосфорилирования . Проницаема лишь для малых молекул (О 2 , мочевина) и содержит специфические трансмембранные переносчики.

4. Матрикс содержит ферменты цикла трикарбоновых кислот,
b-окисления жирных кислот (основные поставщики субстратов окисления ). Здесь находят ферменты автономного митохондриального синтеза ДНК, РНК, белков и др.

Существует мнение, что реально в клетках существует митохондриальный ретикулум , посредством которого формируется одна гигантская разветвленная митохондрия. При электронномикроскопическом анализе клеток выявляется общепринятая картина отдельных митохондрий, получаемая в результате поперечных срезов разветвленной структуры митохондрии. При гомогенизировании тканей выделяются отдельные митохондрии как результат замыкания разрушенных мембранных структур митохондрии. Единая для клетки мембранная структура митохондрии может служить для транспорта энергии в любые отделы клетки. Такие митохондрии обнаружены в клетках жгутиковых, дрожжей, ряда тканей (мышцы).

У бактерий митохондрий нет , аэробное окисление и образование АТФ протекают в цитоплазматической мембране в особых мембранных образованиях – мезосомах. Мезосомы представлены двумя основными формами – ламмелярной и везикулярной.

В основе биологического окисления лежат окислительно-восстановительные процессы, определяемые переносом электронов . Вещество окисляется, если теряет электроны или одновременно электроны и протоны (водородные атомы, дегидрирование) или присоединяет кислород (оксигенирование). Противоположные превращения – восстановление.

Способность молекул отдавать электроны другой молекуле определяется окислительно-восстановительным потенциалом (редокс-потенциалом, Е 0 ¢, или ОВП). Редокс-потенциал определяют путем измерения электродвижущей силы в вольтах. В качестве стандарта принят редокс-потенциал реакции при рН 7,0: Н 2 « 2Н + + 2е - , равный - 0,42 В. Чем меньше потенциал окислительно-восстановительной системы, тем легче она отдает электроны и в большей степени является восстановителем. Чем выше потенциал системы, тем сильнее выражены ее окислительные свойства, т.е. способность принимать электроны. Это правило лежит в основе последовательности расположения промежуточных переносчиков электронов от водородов субстратов до кислорода от НАДН (-0,32 В) до кислорода (+0,82 В).

При изучении окислительных процессов в клетках целесообразно придерживаться следующей схемы использования кислорода (табл. 6.2). Здесь рассматриваются три основных пути: 1) окисление субстрата путем дегидрирования с переносом двух атомов водорода на атом кислорода с образованием Н 2 О (энергия окисления аккумулируется в форме АТФ, на этот процесс расходуется более 90% кислорода) или молекулу кислорода с образованием Н 2 О 2 ; 2) присоединение атома кислорода с образованием гидроксильной группы (повышение растворимости субстрата) или молекулы кислорода (метаболизм и обезвреживание устойчивых ароматических молекул); 3) образование кислородных свободных радикалов, служащих как для защиты внутренней среды организма от чужеродных макромолекул, так и для повреждения мембран в механизмах окислительного стресса. Тканевое дыхание часть биологического окисления, при котором происходит дегидрирование и декарбоксилирование субстратов с последующим переносом протонов и электронов на кислород и выделением энергии в виде АТФ.

Таблица 6.2

Основные пути использования кислорода в клетках

Субстраты окисления – это молекулы, которые при окислении дегидрируются (теряют 2 Н). В основе классификации лежит представление о том, что стандартная свободная энергия окисления НАДН составляет DG 0 ¢ = -218 кДж/моль. В связи с этой величиной различают 3 вида субстратов:

1. Субстраты I рода (углеводородные) – сукцинат, ацил-КоА.

При их дегидрировании образуются непредельные соединения. Средняя энергия отщепления пары е - около 150 кДж/моль; НАД не может участвовать в дегидрировании субстратов I рода.

2. Субстраты II рода (спиртовые) – изоцитрат, малат. При их дегидрировании возникают кетоны. Средняя энергия отщепления пары е - около 200 кДж/моль, поэтому НАД может участвовать в дегидрировании субстратов II рода.

3. Субстраты III рода (альдегиды и кетоны) – глицеральдегид-3-фосфат, а также пируват и 2-оксоглутарат.

Энергия отщепления пары е - около 250 кДж/моль. Дегидрогеназы субстратов III рода часто содержат несколько коферментов. При этом часть энергии запасается до цепи переноса электронов.

В зависимости от типа субстрата окисления (т.е. от энергии отщепления пары е -) выделяют полную и укороченную дыхательные цепи (цепи переноса электронов, ЦПЭ). ЦПЭ – это универсальный конвейер по переносу электронов от субстратов окисления к кислороду, построенный в соответствии с градиентом окислительно-восстановительного потенциала. Главные компоненты дыхательной цепи расположены в порядке возрастания их окислительно-восстановительного потенциала. В полную ЦПЭ вступают субстраты II и III рода, в укороченную – субстраты I рода. ЦПЭ встроена во внутреннюю мембрану митохондрий. Атомы водорода или электроны перемещаются по цепи от более электроотрицательных компонентов к более электроположительному кислороду.

АТФ - универсальный накопитель биологической энергии. Ее роль для всего живого была сформулирована академиком АМН СССР В. А. Энгельгардтом в 1940 г. следующим образом: «Любой клеточный накопитель энергии образует АТФ, любой расход энергии в клетке оплачивается АТФ». Это правило справедливо и для мышечных клеток и клеток мозга, где энергия накапливается дополнительно.

В китайской традиции существует понятие четырех биграмм или четырех фундаментальных энергий : трансцендентная энергия , энергия начала, о ней никогда не говорится в книгах, поскольку, она вездесуща и без нее ничего бы не существовало; ...

Молекула АТФ содержит три остатка фосфорной кислоты. Связи между ними (в присутствии фермента АТФазы) легко разрываемы. При отщеплении от одной молекулы АТФ одной молекулы фосфорной кислоты выделяется 40 кДж энергии, поэтому связи называют макроэргическими (несущими большое количество энергии).

Преобразование химически связанной в АТФ энергии в механическую (необходимую для осуществления мышечного сокращения), электрическую, световую, звуковую энергию осмоса и другие ее виды, обеспечивающие синтез пластических веществ в клетке, рост , развитие , возможность передачи наследственных признаков, осуществляется в головке элементарных частиц дыхательных ансамблей благодаря присутствию в них, т. е. в тех же частицах, где происходит ее синтез. Выделяющаяся при распаде АТФ энергия непосредственно переходит в биологическую, необходимую для синтеза белков, нуклеотидов и других органических соединений, без которого рост и развитие организма невозможны. Запасы энергии в АТФ используются для осуществления движений, генерации электричества, света, для выполнения любой функции клетки и ее органелл.

Запасы АТФ в клетке ограничены. В мышечных волокнах они могут обеспечить энергией всего лишь 30-40 сокращений, а в клетках других тканей их еще меньше. Для пополнения запасов АТФ должен постоянно происходить ее синтез - из (АДФ) и неорганического фосфата, который осуществляется с участием фермента АТФсинтетазы. Поэтому большое значение для управления процессом синтеза АТФ имеет соотношение между концентрациями АТФ и АДФ (активностью АТФсинтетазы). При недостатке АДФ благодаря наличию АТФазы в активном центре будет ускоряться гидролиз АТФ, который, как отмечалось, связан с процессом окислительного, зависит от состояния переносчиков водорода и кислорода.

Чем больше НАД и меньше восстановленной его формы, чем больше окисленного цитохрома с и АДФ, тем скорость синтеза АТФ выше. Наряду с другими ферментами и коферментами в качестве основных регуляторов работы дыхательных ансамблей выступают на первом этапе переноса водорода от субстрата НАД - НАД на втором - переносчик электронов на кислород , цитохромы, и на заключительном этапе - соотношение между АТФ и АДФ.

Практическое занятие № 15.

Задание к занятию № 15.

Тема: ЭНЕРГЕТИЧЕСКИЙ ОБМЕН.

Актуальность темы.

Биологическое окисление – совокупность протекающих в каждой клетке ферментативных процессов, в результате которых молекулы углеводов, жиров и аминокислот расщепляются, в конечном счете, до углекислоты и воды, а освобождающаяся энергия запасается клеткой в виде аденозинтрифосфорной кислоты (АТФ) и затем используется в жизнедеятельности организма (биосинтез молекул, процесс деления клеток, сокращение мышц, активный транспорт, продукция тепла и др.). Врач должен знать о существовании гипоэнергетических состояний, при которых снижается синтез АТФ. При этом страдают все процессы жизнедеятельности, которые протекают с использованием энергии, запасенной в виде макроэргических связей АТФ. Наиболее распространенная причина гипоэнергетических состояний – гипоксия тканей , связанная со снижением концентрации кислорода в воздухе, нарушением работы сердечно-сосудистой и дыхательной систем, анемиями различного происхождения. Кроме того, причиной гипоэнергетических состояний могут быть гиповитаминозы , связанные с нарушением структурного и функционального состояния ферментных систем, участвующих в процессе биологического окисления, а также голодание , которое приводит к отсутствию субстратов тканевого дыхания. Кроме того, в процессе биологического окисления образуются активные формы кислорода, запускающие процессы перекисного окисления липидов биологических мембран. Необходимо знать механизмы защиты организма от данных форм (ферменты, лекарственные препараты, оказывающие мембраностабилизирующее действие – антиоксиданты).

Учебные и воспитательные цели:

Общая цель занятия: привить знания о протекании биологического окисления, в результате которого образуется до 70-8- % энергии в виде АТФ, а также об образовании активных форм кислорода и их повреждающего действия на организм.

Частные цели: уметь определять пероксидазу в хрене, картофеле; активность сукцинатдегидрогеназы мышц.



1. Входной контроль знаний:

1.1. Тесты.

1.2. Устный опрос.

2. Основные вопросы темы:

2.1. Понятие об обмене веществ. Анаболические и катаболические процессы и их взаимосвязь.

2.2. Макроэргические соединения. АТФ – универсальный аккумулятор и источник энергии в организме. Цикл АТФ-АДФ. Энергетический заряд клетки.

2.3. Этапы обмена веществ. Биологическое окисление (тканевое дыхание). Особенности биологического окисления.

2.4. Первичные акцепторы протонов водорода и электронов.

2.5. Организация дыхательной цепи. Переносчики в дыхательной цепи (ЦПЭ).

2.6. Окислительное фосфорилирование АДФ. Механизм сопряжения окисления и фосфорилирования. Коэффициент окислительного фосфорилирования (Р/О).

2.7. Дыхательный контроль. Разобщение дыхания (окисления) и фосфорилирования (свободное окисление).

2.8. Образование токсичных форм кислорода в ЦПЭ и обезвреживание перекиси водорода ферментом пероксидазой.

Лабораторно-практические работы.

3.1. Методика определения пероксидазы в хрене.

3.2. Методика определения пероксидазы в картофеле.

3.3. Определение активности сукцинатдегидрогеназы мышц и конкурентное торможение её активности.

Выходной контроль.

4.1. Тесты.

4.2. Ситуационные задачи.

5. Литература:

5.1. Материалы лекций.

5.2. Николаев А.Я. Биологическая химия.-М.: Высшая школа, 1989., С 199-212, 223-228.

5.3. Березов Т.Т., Коровкин Б.Ф. Биологическая химия. - М.: Медицина, 1990.С.224-225.

5.4. Кушманова О.Д., Ивченко Г.М. Руководство к практическим занятиям по биохимии.- М.: Медицина, 1983, раб. 38.

2. Основные вопросы темы.

2.1. Понятие об обмене веществ. Анаболические и катаболические процессы и их взаимосвязь .

Живые организмы находятся в постоянной и неразрывной связи с окружающей средой.

Эта связь осуществляется в процессе обмена веществ.

Обмен веществ (метаболизм)совокупность всех реакций в организме.

Промежуточный обмен (внутриклеточный метаболизм) – включает 2 типа реакций: катаболизм и анаболизм.

Катаболизм – процесс расщепления органических веществ до конечных продуктов (СО 2 , Н 2 О и мочевины). В этот процесс включаются метаболиты, образующиеся как при пищеварении, так и при распаде структурно-функциональных компонентов клеток.

Процессы катаболизма в клетках организма сопровождаются потреблением кислорода, который необходим для реакций окисления. В результате реакций катаболизма происходит выделение энергии (экзергонические реакции), которая необходима организму для его жизнедеятельности.

Анаболизм – синтез сложных веществ из простых. В анаболических процессах используется энергия, освобождающаяся при катаболизме (эндергонические реакции).

Источниками энергии для организма являются белки, жиры и углеводы. Энергия, заключенная в химических связях этих соединений, в процессе фотосинтеза трансформировалась из солнечной энергии.

Макроэргические соединения. АТФ – универсальный аккумулятор и источник энергии в организме. Цикл АТФ-АДФ. Энергетический заряд клетки.

АТФ является макроэргическим соединением, содержащим макроэргические связи; при гидролизе концевой фосфатной связи выделяется около 20 кдж/моль энергии.

К макроэргическим соединениям относятся ГТФ, ЦТФ, УТФ, креатинфосфат, карбамоилфосфат и др. Они используются в организме для синтеза АТФ. Например, ГТФ + АДФ à ГДФ + АТФ

Этот процесс называется субстратное фосфорилирование – экзоргонические реакции. В свою очередь все эти макроэргические соединения образуются при использовании свободной энергии концевой фосфатной группы АТФ. Наконец, энергия АТФ используется для совершения различных видов работ в организме:

Механической (мышечное сокращение);

Электрической (проведение нервного импульса);

Химической (синтез веществ);

Осмотической (активный транспорт веществ через мембрану) – эндергонические реакции.

Таким образом, АТФ- главный, непосредственно используемый донор энергии в организме. АТФ занимает центральное место между эндергоническими и экзергоническими реакциями.

В организме человека образуется количество АТФ, равное массе тела и за каждые 24 часа вся эта энергия разрушается. 1 молекула АТФ «живет» в клетке около минуты.

Использование АТФ как источника энергии возможно только при условии непрерывного синтеза АТФ из АДФ за счет энергии окисления органических соединений. Цикл АТФ-АДФ – основной механизм обмена энергии в биологических системах, а АТФ – универсальная «энергетическая валюта».

Каждая клетка обладает электрическим зарядом, который равен

[АТФ] + ½[АДФ]

[АТФ] + [АДФ] + [АМФ]

Если заряд клетки равен 0,8-0,9, то в клетке весь адениловый фонд представлен в виде АТФ (клетка насыщена энергией и процесс синтеза АТФ не происходит).

По мере использования энергии, АТФ превращается в АДФ, заряд клетки становится равным 0, автоматически начинается синтез АТФ.